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1. Motivation and background

Conventional vortex generators as found on many civil aircrafts are mainly for

off-design conditions - e.g. suppression of separation or loss of aileron power when

the Mach number accidentally rises above the design (cruise) value. In normal

conditions they perform no useful function and exert a significant drag penalty.

Recently there have been advances in new designs for passive vortex generators

and boundary layer control. While traditionally the generators heights were of the

order of the boundary layer thickness (_), recent advances have been made where

generators of the order of 8/4 have been shown to be effective: see Gad-el-Hak

Bushnell (1991) for a review.

The advancement of Micro-Electro-Mechanical (MEM) devices has prompted sev-

eral efforts in exploring the possibility of using such devices in turbulence control.

These new devices offer the possibility of boundary layer manipulation through the

production of vortices, momentum jets, or other features in the flow. However,

the energy output of each device is low in general, but they can be used in large

numbers. Therefore, the possibility of moving from passive vortex generators to

active (on-demand) devices becomes of interest. Replacement of fixed rectangular

or delta-wing generators by devices that could be activated when needed would

produce substantial economies.

One example of an "on-demand" device is the vortex-generator jet originally

proposed by Compton & Johnston (1992), in which an oblique jet is emitted from

a nozzle flush with the surface. This is a simple device; however, it is likely to

be economic only on or near engine nacelles where high-pressure air is available.

Ducting to other parts of an aircraft is likely to involve so much extra weight and
cost that there would be no net economic benefit.

An alternative form of "on-demand" vortex generator, requiring only an electrical

power supply, has been developed by Jacobson _ Reynolds (1993) at Stanford

University. It consists of a surface cavity elongated in the stream direction (Fig. 1)

and covered with a lid cantilevered at the upstream end. This kind of a vortex

generator is also called a "springboard" actuator. The lid, which is a metal sheet

with a sheet of piezoelectric ceramic bonded to it, lies flush with the boundary. On

application of a voltage of the order of 10-100V, the ceramic expands or contracts;

although the longitudinal strain is small, the induced bending strain is orders of

magnitude larger. Even so, adequate amplitude can be obtained only by running

at the cantilever resonance frequency and applying amplitude modulation: for 2.5

mm × 20 mm cantilevered lids, they obtained tip displacements of the order of 100
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FIGURE l. A schematic diagram of springboard piezo-ceramic actuator developed

by Jacobson & Reynolds (1993). (a) Side view; (b) Front view.

to 150 #m. As the lid oscillates, fluid is expelled from the cavity through the gap
around the lid on the downstroke.

The breakthrough innovation of the device was achieved using an asymmetrical

gap configuration as shown in Fig. 1 (narrow gap _ 50 to 75 #m and wide gap

,,m 250 #m). Their actuator was driven with a 25 V amplitude sine wave at a

frequency of approximately 325 Hz in water. Jacobson &: Reynolds found that

periodic emerging jets on the narrow side induced periodic longitudinal vorticity

into the boundary layer. With a vertical cavity wall a vortex pair with common

flow upwards is formed (Fig. 2). The cavity-lid combination developed by them

has the potential to be made using micro-fabrication techniques, which are ideally

suited to mass production. Their device was used to modify the inner layer of the

boundary layer for skin-friction reduction and is now being incorporated into an

active-control feedback system.

Our proposed application is not strictly "active" control: the vortex generators

would simply be switched on, all together, when needed (e.g. when the aircraft Mach
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FIGURE 2. Induced actuator flow from Jacobson & Reynolds (1993). (a) Directed

effiux; (b) Diffuse influx; (c) Superposition of (a) and (b).

number exceeded a certain limit). To this extent our scheme is simpler; however, to

promote mixing and suppress separation we desire to deposit longitudinal vortices
into the outer layer of the boundary layer as in conventional vortex generators. This

requires a larger device although an alternative might be an array of smaller devices,

for example, a longitudinal row with phase differences in the modulation signals so
that the periodic vortices join up. The vortex pair with common flow up has the

advantage that it will naturally drift away from the surface, but the disadvantage is
that the net vorticity is zero so that the pair is eventually obliterated by turbulent

mixing, rather than simply being diffused as in the case of a single vortex. It

should be possible to devise alternative shapes of cavity wail so that the jet emerges

obliquely and produces net longitudinal vorticity.

2. Accomplishments

2.1. Apparatus and measurement iechnique_

We have built a device with a mechanically driven cantilevered lid to avoid the

restrictions of resonant forcing. Our device is made about ten times the size of

Jacobson _z Reynolds' device because intuition suggested that the optimum ratio
of device size to boundary-layer thickness for our purpose would need to be larger

than in the different task of control of inner-layer turbulence.
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Our vortex generator is made so that shape or size of the cavity and lid (28 mm

× 250 ram) can be easily changed: for example the side walls of the cavity are the
ends of inserts which can be moved in the spanwise direction to alter the gap-width

on one or both sides. The cavity depth (20 mm) can be changed by placing inserts

inside the cavity. The lid frequency can be changed easily by means of a variable
speed DC motor; presently we can obtain a maximum frequency of about 60 Hz for

the cantilever-tip displacement of approximately 10 ram.

As mentioned above, cavity wall inclination may have a large effect on the ejected

vortex pair. Hence our vortex generator is mounted on a turntable so that its yaw
angle can be changed; if the emerging jet sheet is regarded crudely as a solid blockage

of the boundary-layer flow, the jet emerging from a yawed cavity might be a more

effective vortex generator than an unyawed jet. Finally, tests over a range of ratios
of vortex-generator size to boundary layer thickness can be carried out simply by
changing the streamwise location of the device.

Our vortex generator was mounted on the top wall of the 76 cm × 76 cm suction

wind tunnel in the Mechanical Engineering Department at Stanford University.

This wind tunnel is mainly used for flow-visualization purposes. The existing test
section is about 3 m long so that fairly thick turbulent boundary layers can be
obtained at downstream locations in this tunnel.

We conducted extensive flow-visualization experiments at two different free-stream

velocities of Ue _1 m/s and 5 m/s. Here we use a Cartesian coordinate system
xi = (x, y, z) with x-axis along the flow direction, y-axis normal to the solid sur-

face (top wall of the tunnel) and z-axis in the spanwise direction. The respective
mean-velocity components in these directions are Ui = (U, V, W).

Smoke was sucked into the flow by the boundary-layer fluid, through a slot lo-
cated upstream of the vortex generator. A laser-light sheet was used to visualize

the motion in cross-stream (y-z) planes. To document our results, we have taken

photographs and films of the flow patterns around the vortex generator set at differ-
ent orientations to the flow direction; the oscillating tip of the cantilevered lid was

pointed in the (i) downstream, (ii) 45 ° to the downstream, (iii) upstream, and (iv)
45 ° to the upstream directions. Also, tests were conducted for different gap-width
sizes and lid-oscillation frequencies at the above two free-stream velocities. Some

of these flow-visualization results are presented and discussed below.

2.2. Results and discussion

For the first time, we are able to see the vortices that the "on-demand" vortex

generator deposits into the boundary layer. As mentioned above we have taken a

large number of photographs, three of which are shown in Figs. 3, 4, and 5, where

all the pictures show flow patterns in y-z planes (flow out of page). Also, in these

pictures, the wide-gap and the narrow-gap are 1 mm and 0.2 mm respectively. The
lid frequencies were approximately 20 Hz and 50 Hz for the experiments conducted
at Ue ,_1 m/s and 5 m/s respectively.

In Fig. 3 the vortex generator is pointed in the downstream direction, and the

wide gap in this case is located on the left-hand side of the picture. This is the flow
pattern obtained at Ue ,,_ 1 m/s. Fig. 4 shows the flow visualization for the same
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FIGURE 3. Jet sheet ejected from the wide gap at U_ _ 1 m/s, when the vortex

generator is pointed in the downstream direction.

FIGURE 4. As Fig. 3 but at Ue -_ 5 m/s.
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FIGURE 5. "V_rtical structure ejected from the wide gap at U_ m 5 m/s, when the
vortex generator is pointed in the upstream direction.

orientation of tile vortex generator, but at Ue _ 5 m/s. It can be seen clearly that

at both free-stream velocities, the jet sheets emerge from the wide gaps only, and
for the high-speed case where the boundary layer thickness at the measurement

location was about 20 mm, the jet sheet extends to approximately 3 to 4 times
boundary-layer thicknesses into the flow.

Fig. 5 shows the flow pattern for U_ _ 5 m/s, but in this case the vortex generator

is pointed in the upstream direction; therefore, the wide gap is now located on the

right-hand side of the picture. Here also we see large ejections from the wide gap
only; however, in this case we can observe a better vortical structure than the one

shown in Fig. 4. This suggests that a more efficient vortex generation may be
achieved in this way. Our visualizations show that these vortical structures last for

large distances downstream of the vortex generator.

In all of our experiments we observed that the stronger jet emerged from the

wide-gap side rather than the narrow side. This is contrary to the finding of Jacob-

son &: Reynolds. In order to explain this difference one may consider the Stokes'

parameter, St =_ _[-_-___d2 (Rathnasingham, et al. 1994), where f is the frequency,

d is the diameter of the circular hole for the "wall-jet" actuators, and v is the kine-

matic viscosity. Based on dimensional analysis, Rathnasingham,et al. proposed

that for this kind of actuator, St > 1 is required to prevent the blockage of the exit
flow due to viscous effects.



"On-demand" vortex generators 203

In the case of the springboard actuators, one may assume d to represent the gap-

width size. In our investigations, for the narrow gap at the highest lid-frequency of
50 Hz, St < 1. Therefore, it appears that for our narrow gap the exit flow is viscous

dominated. This may be the reason that we do not see any flow out of the narrow

gap. However, for the narrow gap of Jacobson & Reynolds' case, St > 1, since their

experiments were conducted in water, and also in their case the lid frequency was
larger than the present studies.

3. Future plans

In order to quantify our conclusions from the flow visualization experiments, we
plan to conduct the following measurements:

(i) To check the efficiency of our device, we need to take spanwise measurements

of skin friction at a few streamwise locations downstream of the vortex generator.

(ii) To obtain a measure of the mean longitudinal vorticity, (°w ovar _7 ), we will
take X-wire measurements in x-y and x-z modes (at close enough spacing to obtain
accurate derivatives) in a few cross-sectional locations downstream of the vortex

generator.

(iii) If the above initial tests show strong vortex-generation effects, we will use

our vortex generators in laboratory adverse-pressure-gradient boundary layers to

suppress separation, and eventually we would test them on a full-scale aircraft in
the 80' × 120' wind tunnel at NASA Ames.
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